Breakthrough Research Revolutionizes Hydrogen Generation | OilPrice.com

  • The discovery, published in Nature, focuses on a highly efficient electrocatalyst improving hydrogen generation from electrocatalytic water splitting.
  • Led by Professor Zhang Hua, the team used transition-metal dichalcogenide nanosheets for superior efficiency and stability during the hydrogen evolution reaction.
  • The research showcases the potential for reduced platinum use in the electrolysis process, emphasizing longer electrolyser lifespan and cleaner energy prospects.
image

A City University of Hong Kong research team achieved a groundbreaking advancement in nanomaterials by successfully developing a highly efficient electrocatalyst. The catalyst can enhance the generation of hydrogen significantly through electrochemical water splitting.

The discovery, published in the journal Nature, centers on developing a highly efficient electrocatalyst that can enhance hydrogen generation through electrocatalytic water splitting. The paper is titled “Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution.”

Professor Zhang Hua, Herman Hu Chair Professor of Nanomaterials at CityU, who is spearheading the research said, “Hydrogen generated by electrocatalytic water splitting is regarded as one of the most promising clean energies for replacing fossil fuels in the near future, reducing environmental pollution and the greenhouse effect.”

Professor Zhang’s collaborators include Professor Anthony R. J. Kucernak from the Department of Chemistry at Imperial College London and researchers from universities and research institutes in Hong Kong, mainland China, Singapore and the UK.

The critical development in the CityU-led research is establishing novel catalysts by using the transition-metal dichalcogenide (TMD) nanosheets as supports, enabling superior efficiency and high stability during the electrocatalytic hydrogen evolution reaction (HER), a vital step in electrocatalytic water-splitting, also known as the water electrolysis technique, for hydrogen production.

The team has been exploring how to enhance the performance of the HER process by engineering the crystal phase of nanomaterials for several years. Although TMD nanosheets with unconventional crystal phases possess great potential to be used as catalyst supports, fabricating such sheets pure enough for HER is far from straightforward.

But in this research, Professor Zhang’s team has developed a new method to prepare unconventional-phase TMD nanosheets with high phase-purity and quality. Furthermore, they have investigated the crystal phase-dependent growth of noble metals on the TMD nanosheet supports.

Technically speaking, they found that the 2H-phase template facilitates the epitaxial growth of Pt nanoparticles, whereas the 1T′-phase template supports single-atomically dispersed Pt atoms (s-Pt). The synthesized s-Pt/1T′-MoS2 serves as a highly efficient catalyst for HER and can work for 500 hours in the water electrolyser, demonstrating that 1T′-TMD nanosheets could be effective supports for catalysts.

Dr Shi Zhenyu, a postdoctoral researcher in CityU’s Department of Chemistry and the first author of the paper noted, “We will develop more efficient catalysts based on this finding and explore their applications in various catalytic reactions.”

These findings expand the scope of phase engineering in nanomaterials, paving the way for the design and synthesis of highly efficient catalysts, contributing to cleaner energies and more sustainable development.

  • **

This looks quite promising. While still relying on platinum there might be a reduction in the amount needed and improving the lifespan of the electrolyser.

This is news that’s sure to energize the hydrogen enthusiasts.

Never-the-less, as the effort to come up with low cost ways to split water, platinum can only work if it lasts a really (really) long time. That’s where this team’s work might bear real relevancy.

Enthusiasts are also going to have to work on the cost of the energy. The news and commentary suggests the energy will come from “excess production”. But the plant’s costs and maintenance are going to be need paid for. Excess implies they will running, not standing by without wear and ageing.

Meanwhile, lets hope the breakthrough value in this also applies to fuel cell production.

By Brian Westenhaus via New Energy and Fuel

More Top Reads From Oilprice.com: